636

approximate c.p.d.f. of & at the ith point. In most
computations, ne =19 and & was varied from 0 to
90° in steps of 5°. The approximations considered
are: (i) Cochran’s (1955) c.p.d.f. of &, based on the
central limit theorem; (ii) the c.p.d.f. of & based on
the new algorithm described in this paper; and (iii)
the c.p.d.f. of @ based on an improved polynomial
approximation based on the method of Posner et al.
(1993).

The agreement of approximations (ii) and (iii) with
the exact c.p.d.f. is very good throughout the range
I5=N=<70, as can be seen from Table 3. The
discrepancy of Cochran’s (1955) c.p.d.f. and the
exact one is quite considerable in this range of N,
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although it decreases slowly with increasing N. Both
new approximations have a similar behaviour: the
value of R is highest at the low end of the N range
and decreases with increasing N; their performance is
similar and, in general, very good.
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Abstract

Formulae for the rotation of real spherical harmonic
functions are presented. To facilitate their appli-
cation, values of the matrices d%,(m/2), which
occur in the equations, are tabulated for 1 </<8
and 0 =m’, m < /. The application of the equations
to spherical harmonic functions with normalization
commonly used in charge-density analysis is
described.

Introduction

The real spherical harmonic functions are extensively
used for the description of atomic orbitals and as
density basis functions in the analysis of experimen-
tal charge densities. In order to recognize the local or
global symmetry of a particular site, it is often
necessary to rotate the coordinate system after com-
pletion of a theoretical calculation or an experimen-
tal charge-density analysis. In the multipole analysis
of charge densities, for example, application of local
symmetry constraints requires the use of a local
coordinate system on each of the atoms (Hansen &
Coppens, 1978). For subsequent calculation of
molecular properties, such as molecular electrostatic
moments, it is necessary to rotate the functions to a
common coordinate system.
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The treatment given starts with the equations by
Steinborn & Ruedenberg (1973) for the rotation of
complex spherical harmonic functions and is similar
to that described earlier by Cromer, Larson &
Stewart (1976); however, expressions are given for
both unnormalized and normalized spherical har-
monic functions, the latter with normalization
appropriate for either wave functions or density
functions. Explicit numerical values are given for the
matrices (up to /=8) that occur in the equations,
thus facilitating their application. In addition, a
number of inadvertent errors in the earlier publica-
tion have been eliminated.

Coordinate-system rotations

Let (r, 8, @) and (r, €', ¢') be the spherical coordi-
nates of a vector
€ e
X = (xl,X2,X3) e2 = (x’lax'Z,x'E‘) e,2 .
€; e’
The unitary matrix that transforms the two right-
handed Cartesian bases e and e’ can be written in

terms of Eulerian angles a, 8 and y (Arfken, 1970;
Edmonds, 1974; Steinborn & Ruedenberg, 1973),
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such that
e} cosacosBcosy—sinasiny cosasiny+sinacosfBcosy —sinfBcosy) [e e
er|=| —cosacosBsiny—sinacosy cosacosy—sinacosBsiny singsiny e|=Rle ] (1)
e cos a sin B sin a sin B cos B €; €
That is, the transformation is represented as succes- 1957)

sive rotations of y, B, a about the e, e; and e; axes.
A positive rotation is a counterclockwise rotation.*
Since R is unitary, it follows that the Cartesian
coordinates transform as

x' X
x5 =Rl x| )
x5 X3

The Eulerian angles have domain of definition
0<sa<2m 0<B=<m and 0=<y=<27. From (1)
and (2), a, B and y can be expressed in terms of the
elements of R:

B = arccos (Ri3), (3a)
arccos (Rs;/sin B) if Ryj=0
a= . ) R (3b)
21 — arccos (R;3;/sin B) if R;; <0
{arccos (= Ry3/sin B) if Ry3=0 30)
= . C
Y 29 — arccos (— Ry3/sin B) if Ry3<0

Equations (3b) and (3¢) are valid if Rj;;#= =1.
If Ryj3= =1, then B8 = {2 We set ¥y =0 and find «
from
B {arccos (R11/Rs3) if Ri2/R33=0 @
*7 2 — arccos (Ryy/Rs3) if Riz/Ry <0
Equations (3) and (4) ensure that the angles are

within the domain of definition and are unam-
biguously defined.

Rotation of spherical harmonic functions
Rotation of complex spherical harmonics

The complex spherical harmonic functions are
defined for /=0 and —/<=m=1by

Y7(6,0) = (= D)2 + 1)/4m]( — m)!/(I + m)!]}'2
X PY(cos 6) exp (img) )]

[where P7'(x) is an associated Legendre function
(Arfken, 1970)]. The Y7'(0,¢) as defined here contain
the Condon-Shortley phase factor (—1)” (Condon &
Shortley, 1957). They transform under rotation
according to (Steinborn & Ruedenberg, 1973; Rose,

* a, B, and y are related to the diffractometer angles w, y and
@, except that, in the conventional definition, the rotation 8 is
around the y axis rather than the x axis.

1
YT(ols‘P’) = Z Y;n’(oaqp)Dsrlr)'m(asﬁa Y), (6)

m'=-1

where the D are (2/ + 1) X (2/ + 1) matrices, which
form the (2/ + 1)-dimensional irreducible representa-
tion of the rotation group. We may write

Dfrll)’m(a,ﬁa'y) = eXp (_ lm,a)dgl)'m(ﬂ) €Xp (_ le) (761)

DY, (a,B,y) are the matrix elements of
exp (—iaL,)exp (—iBL,)exp (—iyL,), where L, and
L, are the Cartesian components of the angular
momentum operator L; L,=L-e;, L,=L-e,.
D® (a,B,y) are related to Wigner’s (1959)
D(l)({ala2a3})m’m by

Dgw)’m(a’ﬁ"y) = D(D({_ Y,—a,— B})m’ma (7b)

where DY({a,,a5,as}),, are the matrix elements of
exp (i, L) exp (ia,L,) exp (ia3L,). Note that the
transformation given in (1) is written as {yBa} with
Wigner’s notation.

The elements d%,.(8) can be calculated by (Stein-
born & Ruedenberg, 1973; Rose, 1957)

d2,.(8) = [(I + m"(I — m" W + m)(I — m)']"?

<=z o)
k

x ( l_,m )[COS (ﬂ/z)]ZI—m’+m—2k
I—-m -k

X [sin (B/2)JF—m*™, ®8)
with the range of integer k defined by
max(0, m —m') <k <min(/—m', [ + m)
and () = all(a - ).

Rotation of real spherical harmonics

The real spherical functions with normalization
JV3pd02 =1 are defined by

Yim+(8,0) = {21 + 1)/27(1 + 8,0)]
x [(I — m)\/(I + m)']}'”2
X P7'(cos 8) cos (me)
= N,,,P}(cos 8) cos (me) (9a)
and

Vim-(0,0) = N, P7'(cos 6) sin (me) (9b)

with 0 = m < . y,0(0,¢) is defined as y,0.(0,9).



638
The real spherical harmonics are related to the
complex spherical harmonics by
yio(8,9) = Y1(6,0) (10a)
for m=0 and
Vims =[(=1)"Y7 + Y ")21? (100)
and
Vim—=[(=1y"Y7 = Y7 )2"% (10c)

for m>0. In other words, the functions y,,, and
Yim— are derived from the real and imaginary parts of
the complex spherical harmonics, respectively. It
then follows from (5) that the rotation of the real
spherical harmonics is described by

Yim+(0',0")
= (= 1)"d(B) cos (my)2"?y;o(6,¢)

+ é {l(=1™*"dD,.(B) cos (my + m' a)
+ (_ l)md(gm'm(ﬂ) cos (my - mla)]ylm'-l—(g:‘P)
+[(=1)"*™dD,.(B) sin (my + m'a)

= (= 1)"d®,..(B)sin (my — m' @)1y _(6,0)},
(11a)
and

ylm—(gl,(o,)
= (= 1D)"*1df)(B) sin (my)2"2y,o(8,¢)
+ é {{(= 1" 14D, (B) sin (my + m' a)
m' =1

+(=1)"*1d?,,.,(B) sin (my ~ m' @)]yy 1 (6,0)
+[(= 1" ™ dQ,,(B) cos (my + m’a)

= (= 1)"d®,..(B) cos (my — m' @)]y 1 - (8,0)}
(11d)
for m >0 and

y10(0,9¢’) = d%(ﬂ)}/’lo(a,ﬁp)
+27172 Z 1{[(— D™ dR(B)
+d?2,,o(B)] cos (M’ @)ypw +(6,¢)
+[(= 1" dQo(B) + d2,.o(B)]

Xsin (m' @)y, - (6,)} (11c)

for m = 0. For the unnormalized real spherical har-
monics, the corresponding equations are:

P7[cos(8')] cos (me")
= S [U= M= )2 = 82
m'=0

X {[cos (my + m' a)sQ.,.(B)

+ (= 1)™ cos (my — m’' @)s® 1]

ROTATION OF REAL SPHERICAL HARMONICS

X P7"(cos 6) cos (m' ¢)
+ [sin (my + m’a)s?..(B)
— (= 1)"sin(my — m' a)s?,,...(B)]
X P7"(cos 6) sin (m’ @)}
form=0;
P7[cos (8")]sin (me')
= io[(l —m"W( - m)]Q2 — S¢w)/2
X {—[sin (my + m' a)s,.(B)
+ (= )™ sin (my — m' @)s? . m(B)]
X P (cos 8) cos (m' @)
+ [cos (my + m' a)sD.,.(B)
= (=1)" cos (my — m' a)s®,,.(B)]
X P7"(cos 6) sin (m’ @)} (12b)

for m >0, where the s@,,(8) are directly related to
d®,.(B) and given by

l+m I-m
S("I')""(ﬂ)=§(_l)k( k )(l—m'—k)

X [COS (B/Z)JZI— m' +m—2k
X [sin (B/2)Jk ~m+m

forizm' , m= -1

Equations (12) and (13) are different from (A7)
and (48) of Cromer, Larson & Stewart (1976). A
simple test, i.e. the rotation of P7(cos ) cos (me), m
< 1, shows that the present results are correct.

(12a)

(13)

Application to multipole density functions

The density-function spherical harmonics are defined
by the normalization f|d,,,|d2=2— 8, (Coppens,
1993).* They are related to the real spherical har-
monics y,,,, defined by (9), by

dlmp( 0’(P)/ylmp(0a¢) = lep /Mlmp (14)

and to the unnormalized functions u,,.(8,¢)=
P7(cos )5 ,'r':g by

dlmp( Baqp)/ulmp(aa‘/’) = lep/Clmp’ (1 5)

where L,,,,, C,, and M,,, are normalization factors
(Coppens, 1993).

The equations for the rotation of d,, follow by
inserting the ratios of the normalization factors in
front of each of the terms on both sides of (11) or

* The real spherical harmonic density functions, d,,,(8,¢), are
not to be confused with the elements d2.,,(8) defined by Steinborn
& Ruedenberg (1973) and Edmonds (1974).
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(12):
dlm+(0,,¢l)

= L/ Cons) 3 [ = W= m))2 = B2

X {[cos (my + m' @)s2,(B)

+ (— 1) cos (my — m' a)s® ]

X (Ci' +/ Lim + )i +(6,)

+ [sin (my + m' a)s2,.(B)

— (=1 sin (my — m’' @)s©,m(B)]

X (Ci ! Lips - ) —(6,0)}
or, in terms of d¥,, rather than s&,,,

i+ (0',0") = (Lim+ /M 1, . J(—= 1)"d)(B)
X cos (my)2"*(Mo/Lio)dio(6,9)

(16)

+ (L1m+/M1m+)
14
X 3 =1 dDn(8)

X cos (my +m'a)

+ (= 1D)"d?,..(B) cos (my — m' a)]

X (M +/ Ly 4 ) +
+[(=1)y"+*™dD,.(B) sin (my + m'a)
= (= 1y"d?®,,,(B) sin (my — m'a)]

X (M~ Lipy - )i —(0,)}, 17)

with m >0 and, similarly, analogous to (11b) and
(12b) for d,,,_(6',¢").

The ratios L,,,/M,,, and L,,,/C,,, are listed in
Table 1. They were obtained from the normalization
factors given in the literature (Coppens, 1993) for / <
7. For [ = 8, the normalization factors for ds,,.(8,¢)
were calculated numerically using Gaussian quadra-
ture as discussed elsewhere (Su & Coppens, 1994).

Transformation of population parameters

Let f, P and f', P’ be (2/+ 1) X 1 matrices rep-
resenting the density-function-normalized spherical
harmonics and their population parameters before
and after rotation, respectively. Then, by using the
ratios in Table 1 and (11) or (12), we construct a
(2] + 1) X (2/ + 1) matrix M such that

' = Mf. (18)
The population parameters transform according to
PP=M"NHP. (19)

For the dipolar terms, M is unitary and (M~")7 =
M, but this is not the case for the higher moments.
For the dipolar populations, the expressions are
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Table 1. Ratios of normalization factors
dlmp( 67 ‘P)/)’/mp(o,‘f’) dlmp( 0;‘P)/ulmp(63 ‘P)
Imp = Lppp! M = Limp! Clp
00 0.28209 0.079577
1+, 11-, 10 0.65147 0.31831
20 0.65553 0.41350
2+, 21~ 0.68647 0.25000
N+, 02— 0.68647 0.12500
30 0.65613 0.48971
31+,31— 0.70088 0.21356
32+, 32— 0.69190 0.066667
33+,33— 0.71929 0.028294
40 0.65620 0.55534
41+, 41— 0.70847 0.18960
2+, 42- 0.69880 0.044079
43+, 43— 0.70616 0.011905
44+, 44— 0.74900 0.0044643
50 0.65617 0.61391
51+, 51— 0.71306 0.17226
524,52~ 0.70407 0.032143
53+, 53— 0.70548 0.0065743
54+, 54— 0.72266 0.0015873
55+, 55— 0.77592 0.00053894
60 0.65611 0.66733
61+, 61— 0.71609 0.15894
62+, 62— 0.70801 0.024846
63+, 63— 0.70703 0.0041354
64+, 64— 0.71555 0.00076411
65+, 65— 0.73945 0.00016835
66+, 66— 0.80049 0.000052610
70 0.65605 0.71677
T+, 71— 0.71823 0.14829
24+, 72— 0.71100 0.019977
73+, 73— 0.70894 0.002810
T4+, 74— 0.71345 0.00060076
75+, 75— 0.72696 0.000072579
76+, 76— 0.75587 0.000014800
77+, 77— 0.82308 0.0000043072
30 0.65599 0.76299
81+, 81— 0.71977 0.13953
82+, 82— 0.71331 0.016527
83+, 83— 0.71082 0.0020272
84+, 84— 0.71311 0.00026256
85+, 85— 0.72154 0.000036841
86+, 86— 0.73881 0.0000058208
87+, 87— 0.77172 0.0000011101
88+, 86— 0.84400 0.00000030351
particularly simple (M = R):
P '1 1+ P 11+
- |=R[P - Js (20)
,]0 P 10

where R is defined in (1).

Alternative computation of ¢,(8) and s3,.(8)

Following Edmonds (1974), the d$®,(B8) can be
related to their values at 8 = 7/2:

!
dP.B)=2 3 AD. .49, . cos[m'' B — (mw/2)n]

m'=1
+ AP AP cos (7/2n), 2n
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where
AL, =dO, (7/2)
=D®,.(0,7/2,0)
= DY{0, — 7/2,0}) ' m
= DP({0,7/2,0) pupr (22)
and
n=m —m.
The symmetries of the d¥9.,.(B),
Ay = dDm(— B)
=d?%, _.B)
=(=1)"""d?2, _.(B)
= (= 1y"~"dQ,.(B)
=(=1)""d?(m— B)
=(=1)"*"d) _ (7 —PB)
=(—1Y""d®,, (r—B)
= (=)"*"d) _ (7 = ), (24)

can be used to simplify the calculations. Thus, it
suffices to give 42, for 0 < m', m < I. Table 2 shows
the values of 42,* for0<sm',m=<1[ 1<1<8.

59,,.(B) can be calculated from d?,(B) by the use
of

Sm(B) = (= 1y ~{( + m)!(l — m)!
X[+ m" - m)]~ '} 7dD,.(B).

(23)

25)

Example of application of the expressions

Fully deuterated benzene crystallizes in the ortho-
rhombic space group Pbca (Jeffrey, Ruble,
McMullan & Pople, 1987). A local Cartesian coordi-
nate for atom C(1) is defined as follows: e; is along
the vector from C(1) to D(l), e, is in the plane of
C(1), C(2) and D(1) and e,, e, and e, form a right-
handed system. This system is related to the
Cartesian coordinate system, defined by e} = a/|al,
e;=b/|b| and e} =c/[c| (where a, b and ¢ are the
crystallographic axes), by

) —0.679841 —0.660441 -0.318801\ /e,

ey |=1 —0.251076 —0.198832  0.947326 || e |-
e; —0.689041  0.724074 —0.030647/ \ e,
(26)

* It should be noted that the values of 4%, = D®,(0,7/2,0) in
Table 2 differ from the values given by Edmonds, which, in
Wigner’s notation [7(6)], are D({0,7/2,0}), (Edmonds, 1974).

ROTATION OF REAL SPHERICAL HARMONICS

From (3), we get @ = 133.580, B =91.7562 and y =
71.4005°. Take y,,,(8',¢"') as an example. We have
[=2and m= 1. d?, are evaluated with (8) or (21):

[4§2(B) dR(B) d211(B) d5(B) d22(B)]
=(-0.037517 —0.514384 0.483737
—0.484449 0.515081). @7)

Substitution of (27) and the values of @ and v into
(11a) gives

Ya14+(0',0") =(0.016922 0.240505 —0.210597

¥20(6,9)

Yar+ (07¢)
0.946645 —0.037180)| y»1 - (6,0) .

Y2+(6,0)

Y22 - (0’47)
(28)

Discussion

Since the Euler angles are related to the rotation
matrix R by (3) and (4), the formulae for the rotation
of real spherical harmonics presented in the present
paper are general. There are, of course, other
parametrizations of the rotation group, e.g. the
parametrization using an angle of rotation and the
direction cosines of the rotation axis (Corio, 1966,
1977; Courant & Hilbert, 1953). Corresponding for-
mulae for the rotation of real spherical harmonics
can be expressed in terms of the alternative param-
eters instead of the Eulerian angles but are not
discussed here.

Fortran subroutine ROTYLMP

A Fortran subroutine ROTYLMP for rotating real
spherical harmonics has been written and incorpo-
rated into the program MOLPROP94 (Su, 1994),
which calculates electrostatic potential, the electric
field, the electric-field gradient and the electrostatic
potential derived atomic charges using the multipole
description of the charge density derived from X-ray
diffraction data (Su & Coppens, 1992; Su, 1993).
ROTYLMP and MOLPROP94 are available from
the authors on request.

Support of this work by the National Science
Foundation (CHE9021069 and CHE9317770) is
gratefully acknowledged.
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Table 2. Special values of the representation matrix elements A2, = d®.,(w/2) = D?.,.(0,7/2,0)

2]/2

3012
16

3(7]/2)

16

101/2

151/2

30/
16
1
16
7[/2
8
42
32
21 12
16
210]/2

32

10!/2

6I12

3512
16
421/2
32
612
16
13
32
9(2”2)
32
3(51/2)
32

2112
16
12

9(2I12)
32

lol/Z
32

=2

3(7]/2)
16
2 101/2
32
301/2
16
3(5'2)
32
]01/2

32

o0 | W

1012
8

7012
16

i W

2!/2
8
7IIZ

141/2

8

6[/2

L S -lkl

101/2

2!/2

4
l4|/2

7!/2
8

71/2

l4|12

2]/2

8
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Table 2 (cont.)

I=6
m 0 1 2 3 4 s 6
"
s 105" 3(14'7) 23112
0 -z 0 o -
16 32 ) 2
5 07 3107 3 667 3227
: 0 6 n 2 Y 2
105" 10v2 17 9 30 1652 3(55™)
2 32 TR o« 2 6  » 64
. 3(102) 9 1 30 1652 551
} ° 2 2 2 15 = x
14y e 304 301 13 02 gen
¢ Y 8 64 e m Y3 64
662 1657 1652 2 5 3
5 0 - - -2 =
32 2 43 16 2 2
BIZ 3227 3557 557 e 3 1
: 2 » 64 I VY 64
1=7
" 0 1 2 3 4 5 6 7
o
s(14%) 342'7) 462 85812
0 o - 0 - 0
64 64 64 64
1 4% s IsED) 3 36 eI e 3003
64 128 122 128 64 128 122 1%
15(6'%) 5 9@y 2 o 1432 20027
g 0 128 32 18 16 28 » 128
@27 9B 1927 91 Lare) 328 10017
3 e 128 128 18 64 128 128 128
eI 1 1 25 62 g
) T e e s wm T e
4622 5@ w1 25 43 526 91
° 64 128 18 128 T4 128 128 18
85812 1437 386" 26" 5(26") 3 14172
¢ 0 122 3 128 16 128 T4 128
858" 30032 20022 1001 o2 g9 142 1
7 e 1282 128 128 64 128 128 128
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Table 2 (cont.)
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=8
m 0 1 2 3 4 5 6 7 8
"
35 3(35"?) 3(154'2) 429'2 3(1430'%)
0 -— 0 - 0 0 - 0
128 64 128 64 256
35 702 1155"2 7742 1001'2 8582 715" 7152
: 0 —12—8 - 128 - 128 64 128 B 128 - 128 64
3(35'2) 702 1 3(66'?) 110'2 1430'2 20022 2002'2
2 - 64 128 A_t - 128 —T 128 0 B 128 128
11552 3(66'2) 17 5(15'%) 195'2 910" 3(273'2) 27312
3 0 B 128 128 ES - 64 128 W h 128 64
3(154'2) 77" 1102 5(15'2) 9 3(13'2) 546' 455'72 455'
4 128 T T e 64 T 64 64 T e 128
10012 14302 195'2 3(13'2) 45 7(42"7) 5(35'%) 352
° 0 128 B 128 128 64 h FS 128 - 128 64
42912 85812 9102 546! 7(42'2) 1 3(30"3) 30'2
6 h 64 128 0 N 128 64 - 128 ; - 128 128
715'2 2002'2 3(273"%) 455" 5(35'2) 3(30'?) 7 1
7 0 B 128 128 h 128 64 - 128 128 - —lﬁ 6_4
3(1430'2) 715'2 20022 2732 4552 3512 302 1 1
s 256 - 64 128 - 64 128 - 64 128 - a 2_56
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